Scale-invariant memory representations emerge from moiré interference between grid fields that produce theta oscillations: a computational model.
نویسندگان
چکیده
The dorsomedial entorhinal cortex (dMEC) of the rat brain contains a remarkable population of spatially tuned neurons called grid cells (Hafting et al., 2005). Each grid cell fires selectively at multiple spatial locations, which are geometrically arranged to form a hexagonal lattice that tiles the surface of the rat's environment. Here, we show that grid fields can combine with one another to form moiré interference patterns, referred to as "moiré grids," that replicate the hexagonal lattice over an infinite range of spatial scales. We propose that dMEC grids are actually moiré grids formed by interference between much smaller "theta grids," which are hypothesized to be the primary source of movement-related theta rhythm in the rat brain. The formation of moiré grids from theta grids obeys two scaling laws, referred to as the length and rotational scaling rules. The length scaling rule appears to account for firing properties of grid cells in layer II of dMEC, whereas the rotational scaling rule can better explain properties of layer III grid cells. Moiré grids built from theta grids can be combined to form yet larger grids and can also be used as basis functions to construct memory representations of spatial locations (place cells) or visual images. Memory representations built from moiré grids are automatically endowed with size invariance by the scaling properties of the moiré grids. We therefore propose that moiré interference between grid fields may constitute an important principle of neural computation underlying the construction of scale-invariant memory representations.
منابع مشابه
Grid cells and theta as oscillatory interference: electrophysiological data from freely moving rats.
The oscillatory interference model (Burgess et al. (2007) Hippocampus 17:801-812) explains the generation of spatially stable, regular firing patterns by medial entorhinal cortical (mEC) grid cells in terms of the interference between velocity-controlled oscillators (VCOs) with different preferred directions. This model predicts specific relationships between the intrinsic firing frequency and ...
متن کاملGrid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons.
Intracellular recording and computational modelling suggest that interactions of subthreshold membrane potential oscillation frequency in different dendritic branches of entorhinal cortex stellate cells could underlie the functional coding of continuous dimensions of space and time. Among other things, these interactions could underlie properties of grid cell field spacing. The relationship bet...
متن کاملConversion of a phase- to a rate-coded position signal by a three-stage model of theta cells, grid cells, and place cells.
As a rat navigates through a familiar environment, its position in space is encoded by firing rates of place cells and grid cells. Oscillatory interference models propose that this positional firing rate code is derived from a phase code, which stores the rat's position as a pattern of phase angles between velocity-modulated theta oscillations. Here we describe a three-stage network model, whic...
متن کاملTheta modulation in the medial and the lateral entorhinal cortex
37 38 Hippocampal neurons show a strong modulation by theta frequency oscillations. 39 This modulation is thought to be important for temporal encoding and decoding of 40 information in the hippocampal system, as well as for temporal ordering of neuronal 41 activities on time scales at which physiological mechanisms of synaptic plasticity 42 operate. The medial entorhinal cortex (MEC), one of t...
متن کاملPossible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells
Existing pharmacological and lesion data indicate that acetylcholine plays an important role in memory formation. For example, increased levels of acetylcholine in the hippocampal formation are known to be associated with successful encoding while disruption of the cholinergic system leads to impairments on a range of mnemonic tasks. However, cholinergic signaling from the medial septum also pl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 12 شماره
صفحات -
تاریخ انتشار 2007